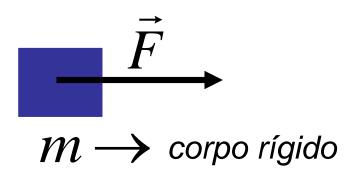


Instituto Federal de Educação, Ciência e Tecnologia de São Paulo Campus São Paulo

LFS 2^a série EMI André Cipoli

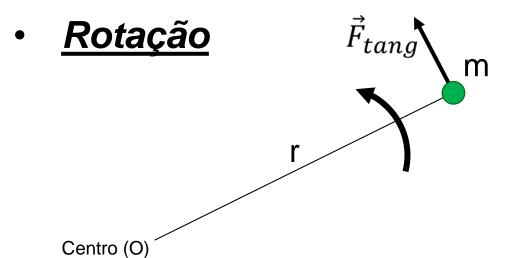
• **Translação** (movimento em linha reta)



Massa (m) – propriedade da matéria, que representa a dificuldade de mudança do movimento **em linha reta**.

Leis de Newton (Translação)

$$\sum \vec{F}_{ext} = m.\,\vec{a}$$



Momento de Inércia (I) – propriedade da matéria, que representa a dificuldade de mudança do movimento <u>circular</u>.

Leis de Newton (Rotação)

$$\sum_{i} \vec{\tau}_{ext} = I.\,\vec{\gamma}$$

Leis de Newton para a Dinâmica de Rotações

Princípio da Inércia Rotacional

Um corpo mantém seu estado de repouso ou de movimento circular uniforme, exceto quando um torque externo resultante atuar sobre ele.

Princípio Fundamental da Dinâmica de Rotações

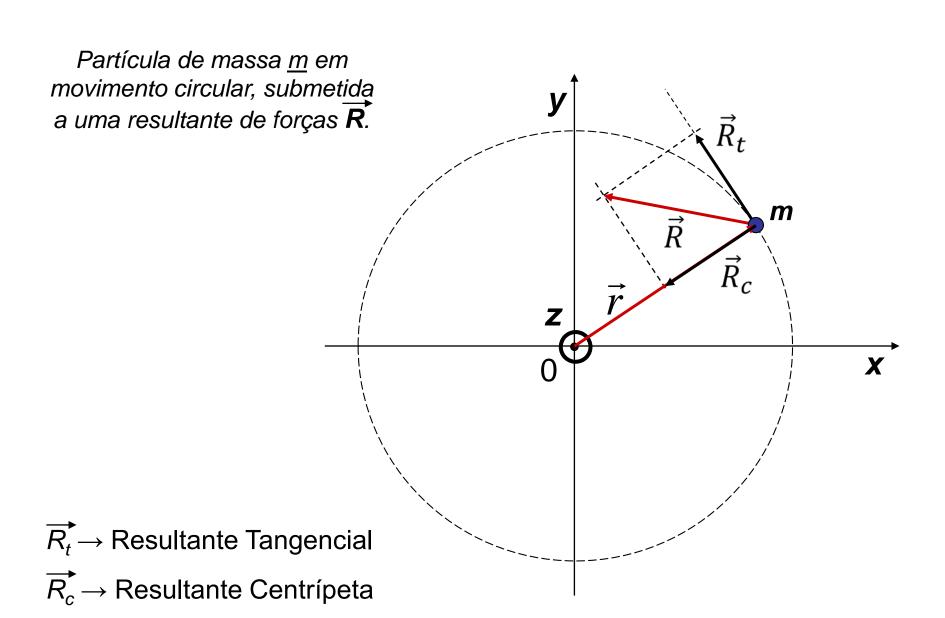
Um corpo com momento de inércia (I) sobre o qual atua um torque externo resultante ($\vec{\tau}_{\vec{R}ext}$), fica submetido a uma aceleração angular ($\vec{\gamma}$).

$$\vec{ au}_{ec{R}} = I.\vec{\gamma}$$

Princípio da Ação/Reação Rotacional

A todo torque-ação ($\vec{\tau}$) corresponde um torque-reação($-\vec{\tau}$), de mesma intensidade, mesma direção, sentidos opostos e aplicados em corpos diferentes.

Significado físico de "l" (Momento de Inércia)



$$\vec{R} = m \cdot \vec{a}$$
 $(\vec{R}_t + \vec{R}_c) = m \cdot (\vec{a}_t + \vec{a}_c)$

Calculando o <u>módulo</u> do Torque de cada termo da resultante, em relação ao ponto 0 (sobre o eixo de rotação z), tem-se:

$$au_{ec{F}} = |ec{F}|.d$$
 , onde d $ightarrow$ braço de alavanca (raio \underline{r})

$$au_{R_c} = R_c. \, 0
ightarrow au_{R_c} = 0$$

$$au_{R_t} = R_t. \, r
ightarrow au_{R_t} = m. \, a_t. \, r
ightharpoonup au_{R_{es}} = au_{ec{R}_t}
ightharpoonup au_{R_t} = au_{ec{R}_t}
ightharpoonup au_{R_t} = au_{ec{R}_t}
ightharpoonup au_{R_t}
ightharp$$

$$\gamma = \frac{a_t}{r}$$

$$\tau_{\vec{R}} = m.r.\gamma.r \longrightarrow \tau_{\vec{R}} = m.r^2.\gamma \longrightarrow \tau_{\vec{R}} = I.\gamma$$

 $I
ightarrow ext{Momento de Inércia em relação a um eixo de rotação, para o caso de uma partícula pontual}$

Unidades (S.I.): $[kg.m^2]$

Não se esqueça de assistir ao seguinte vídeo:

https://www.youtube.com/watch?v=XIri-JH1BeY - Momento de Inércia

Exercício

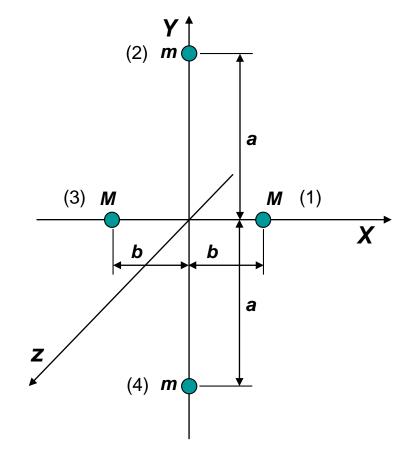
 Determinar o valor do Momento de Inércia <u>I</u> do seguinte sistema de massas pontuais (sistema <u>discreto</u>):

Para um sistema com <u>n</u> partículas

$$I_{T} = \sum_{i=1}^{n} I_{i} = \sum_{i=1}^{n} m_{i} . r_{i}^{2}$$

onde **r** representa a distância da massa pontual ao eixo considerado.

- Em relação ao eixo x;
- Em relação ao eixo y;
- Em relação ao eixo z.



Para um torque conhecido, em torno de qual eixo é mais difícil de girar o sistema?
 (supor m > M e a > b)

• Resolução:

$$I_T = \sum_{i=1}^n I_i = \sum_{i=1}^n m_i . r_i^2$$

• Em relação ao eixo x:

$$I_{x} = \sum_{1}^{4} I_{i} \rightarrow I_{x} = I_{1} + I_{2} + I_{3} + I_{4} \rightarrow$$

$$I_{x} = m_{1}.r_{1}^{2} + m_{2}.r_{2}^{2} + m_{3}.r_{3}^{2} + m_{4}.r_{4}^{2} \rightarrow$$

$$I_x = M.(0)^2 + m.a^2 + M.(0)^2 + m.(a)^2 \rightarrow$$

$$I_x = 2. \, m. \, a^2$$

• Em relação ao eixo y:

$$I_y = \sum_{1}^{4} I_i \rightarrow I_y = I_1 + I_2 + I_3 + I_4 \rightarrow$$

$$I_y = m_1 \cdot r_1^2 + m_2 \cdot r_2^2 + m_3 \cdot r_3^2 + m_4 \cdot r_4^2 \rightarrow$$

$$I_y = M.b^2 + m.(0)^2 + M.b^2 + m.(0)^2 \rightarrow$$

$$I_y = 2.M.b^2$$

• Em relação ao eixo z:

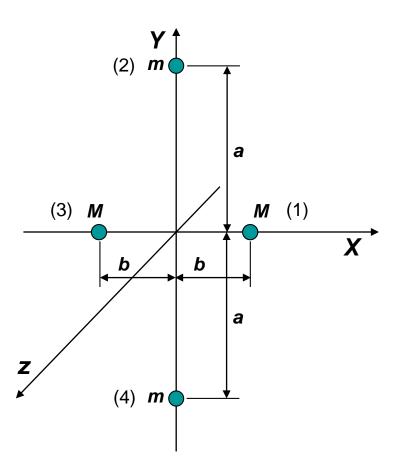
$$I_z = \sum_{1}^{4} I_i \rightarrow I_z = I_1 + I_2 + I_3 + I_4 \rightarrow$$

$$I_z = m_1 \cdot r_1^2 + m_2 \cdot r_2^2 + m_3 \cdot r_3^2 + m_4 \cdot r_4^2 \rightarrow$$

$$I_z = M.b^2 + m.a^2 + M.b^2 + m.a^2 \rightarrow$$

$$I_z = 2.M.b^2 + 2.m.a^2$$

$$I_z > I_x > I_y$$



A aplicação de um Torque de módulo constante em torno de cada eixo, um de cada vez:

$$\vec{\tau}_R = I \cdot \vec{\gamma}$$

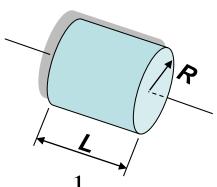
$$\gamma_y > \gamma_x > \gamma_z$$

$$\gamma = \frac{\Delta\omega}{\Delta t}$$

$$\omega_f = \omega_i + \gamma . \Delta t$$

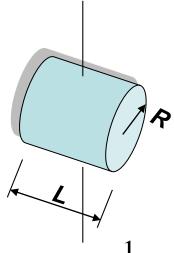
<u>I</u> para objetos <u>contínuos</u>:

Cilindro sólido



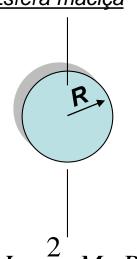
$$I = \frac{1}{2} \cdot M \cdot R^2$$

<u>Cilindro sólido</u>



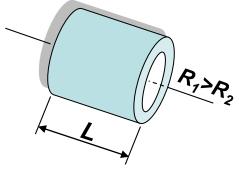
$$I = \frac{1}{4} \cdot M \cdot R^2 + \frac{1}{12} \cdot M \cdot L^2$$

Esfera maciça



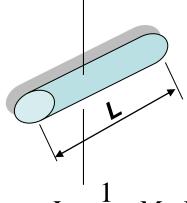
$$I = \frac{2}{5} \cdot M \cdot R^2$$

<u>Cilindro oco de</u> <u>parede espessa</u>



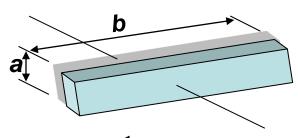
$$I = \frac{1}{2} \cdot M \cdot \left(R_1^2 + R_2^2 \right)$$

Haste longa, delgada



$$I = \frac{1}{12} \cdot M \cdot L^2$$

Chapa retangular



$$I = \frac{1}{12} \cdot M \cdot \left(a^2 + b^2\right)$$

Exercícios

2. Uma haste de massa desprezível gira em torno de um eixo perpendicular ao seu comprimento, passando por uma de suas extremidades. As esferas 1 e 2, cada uma com massa m, estão fixas à haste. A esfera 1 está à distância L do eixo, e a esfera 2 está à distância L do eixo. (a) Escreva a expressão do momento de inércia deste conjunto em termos de L0 Que fração do momento de inércia é devido à esfera 2?

3. <u>Estime</u> o momento de inércia de uma bola de tênis para rotação em torno de um diâmetro. A bola tem massa de 0,070 kg, raio exterior de 32 mm e espessura de 5 mm. Compare esse resultado com o calculado utilizando a fórmula para uma **esfera de parede fina**.

 $I_{epf} = \frac{2}{3}.M.R^2$

- 4. Estime o momento de inércia em relação a um eixo vertical através do centro de massa, de um homem em pé, ereto, com os braços ao longo do corpo. O homem tem 1,8 m de altura e massa de 73 kg. Trate o homem como um cilindro circular reto com densidade de 1,0 x 10⁺³ kg/m³;
- 5. Estime o momento de inércia do homem em relação ao mesmo eixo, quando ele mantém seus braços abertos horizontalmente; trate seus braços como hastes delgadas.

- Resolução do exercício 3:
 - Cálculo da densidade do material que compõe a espessura da bola: $d = \frac{m}{V}$

$$V_{esf} = \frac{4}{3} \cdot \pi \cdot R^{3} \begin{cases} V_{esf_{ext}} = \frac{4}{3} \cdot \pi \cdot (32)^{3} \rightarrow V_{esf_{ext}} = 1,3726. \ 10^{+5} mm^{3} \\ V_{esf_{int}} = \frac{4}{3} \cdot \pi \cdot (27)^{3} \rightarrow V_{esf_{int}} = 0,8245. \ 10^{+5} mm^{3} \end{cases}$$

$$d = \frac{m}{V_{ext} - V_{int}} \rightarrow d = \frac{70}{(1,3726 - 0.8245).10^{+5}} \rightarrow d = 1,2771.10^{-3} \frac{g}{mm^3}$$

• Cálculo da massa da bola, caso ela fosse maciça:

$$m_{maciça} = 1,7530.10^{+2}g$$

• Cálculo da massa da bola, caso ela tivesse 27 mm de raio (oco):

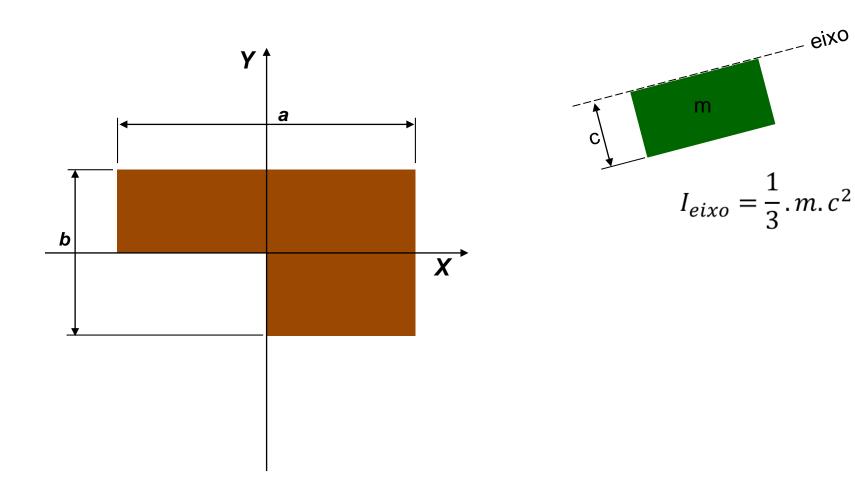
$$d = \frac{m}{V} \rightarrow m_{oco} = d. V_{vazio} \rightarrow m_{oco} = 1,2771. \, 10^{-3}. \, 0,8245. \, 10^{+5} \rightarrow$$
 $m_{oco} = 1,0530. \, 10^{+2} g$

Cálculo do momento de inércia da bola:

$$\begin{split} I_{bola} &= I_{maciça} - I_{oco} \rightarrow \quad I_{bola} = \frac{2}{5}.\, m_{maciça}.\, R_{esf_{ext}}^2 - \frac{2}{5}.\, m_{oco}.\, R_{esf_{int}}^2 \\ I_{bola} &= \frac{2}{5}.\, (1,7530.\,32^2 - 1,0530.\,27^2).\, 10^{+2} \\ I_{bola} &= 4,1097.\, 10^{+4}g.\, mm^2 \\ I_{bola} &= 4,1097.\, 10^{+4}.\, 10^{-3}kg.\, 10^{-6}m^2 \end{split}$$

$$I_{bola} = 4,1097.10^{-5} kg.m^2$$

6. Determinar o valor do Momento de Inércia <u>I</u> do seguinte objeto, em relação aos eixos *X* e *Y*. **Dados**: massa da placa vale <u>M</u> e a fórmula do momento de inércia de uma placa retangular fina que gira em torno de um eixo que passa por uma aresta.



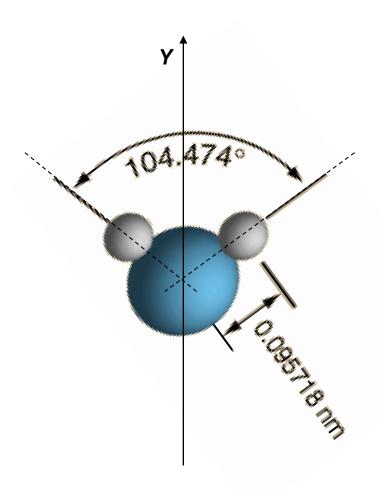
7. A água tem uma molécula com estrutura mostrada na figura abaixo. Determine o momento de inércia da molécula de água em relação à mediatriz do ângulo assinalado na figura como 104,475°.

Dados:

$$m_H = 1,007947 \ u$$

$$m_{\rm O} = 15,99943~u$$

$$u = 1,66 \times 10^{-27} kg$$



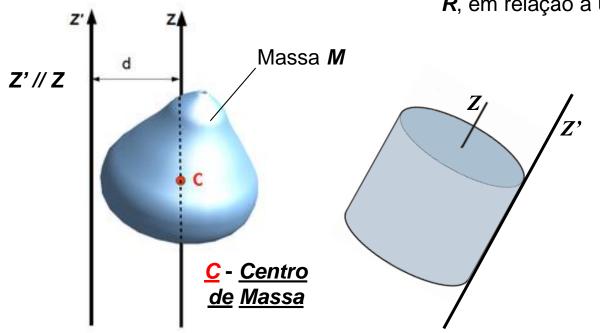
Teorema dos Eixos Paralelos

ou Teorema de Steiner

- Eixo **Z** passa pelo CM
- Eixo Z' paralelo a Z

$$I_{Z'} = I_{Z(CM)} + M.d^2$$

• Exemplo: calcular o momento de inércia de um cilindro circular reto de massa M e raio R, em relação a um eixo Z, conforme figura.



$$I_{Z'} = I_{Z(CM)} + M.d^2$$

$$I_{Z(CM)} = \frac{M.R^2}{2}$$

$$I_{Z'} = \frac{M.R^2}{2} + M.R^2$$

$$I_{Z'} = \frac{3.M.R^2}{2}$$

Determinação do momento de inércia da Terra em relação ao Sol

(supor eixos paralelos e movimento circular):

• Dados:

$$Raio_{Terra} = 6.400 \text{ km}$$

$$Massa_{Terra} = 6 \times 10^{+24} \text{ kg}$$

Trópicos de Câncer e Capricórnio

polo Norte

solstício de verão

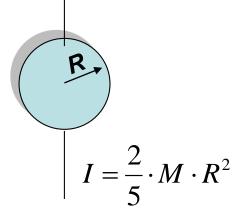
solstício de inverno

Trópico de Capricórnio

solstício de inverno

orbita da Terra

© 2012 Encyclopædia Britannica, Inc.



$$Distância_{Terra-Sol} = 1,5 \times 10^{+11} m$$

• Momento de inércia da Terra em relação ao seu eixo de rotação:

$$I_{rot.Terra} = \frac{2}{5} \cdot 6.10^{+24} \cdot (6,4.10^{+6})^2 \rightarrow I_{rot.Terra} = 4,096.10^{+37} kg.m^2$$

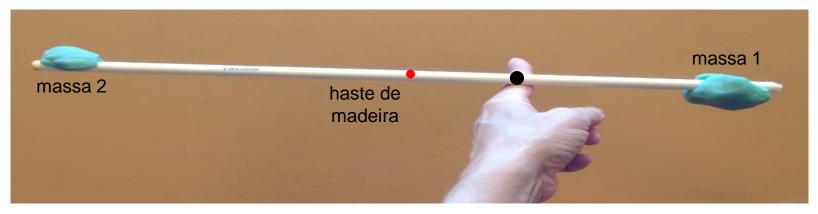
• Momento de inércia da Terra em relação a um eixo paralelo, passando pelo centro do Sol:

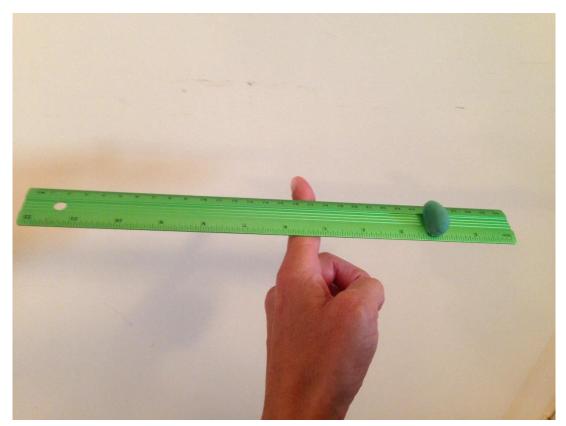
$$I_{EixoSol} = I_{rot.Terra} + M_{Terra}.d_{T/S}^{2} \rightarrow I_{EixoSol} = 4,096.10^{+37} + 6.10^{+24}.(1,5.10^{+11})^{2}$$

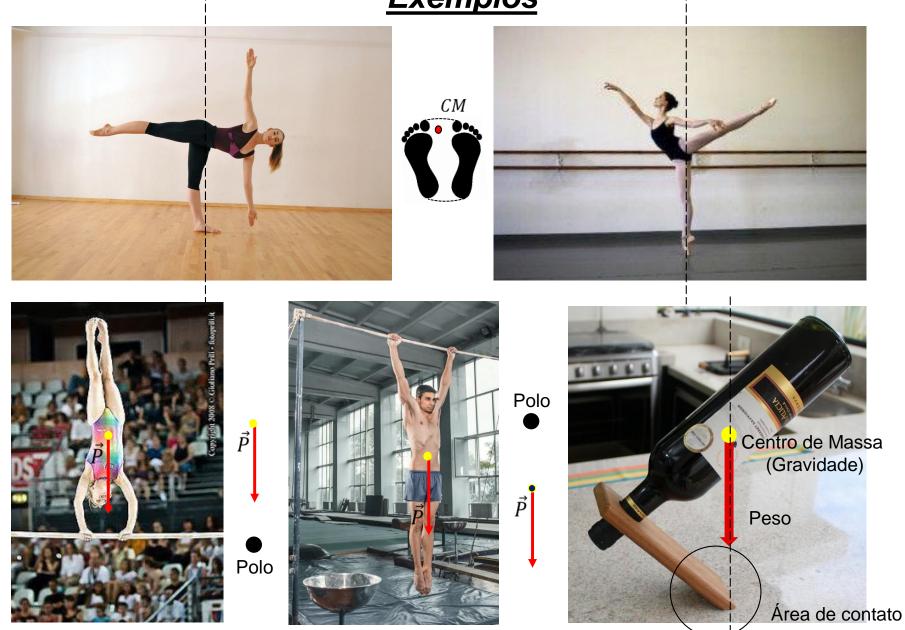
$$I_{EixoSol} = 4,096.10^{+37} + 1,35.10^{+47} \rightarrow I_{EixoSol} = 1,3500000004096.10^{+47} kg.m^{2}$$

$$\frac{I_{rot.Terra}}{I_{EixoSol}} \approx 0\%$$

Equilíbrio



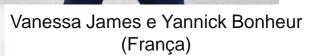




Estabilidade

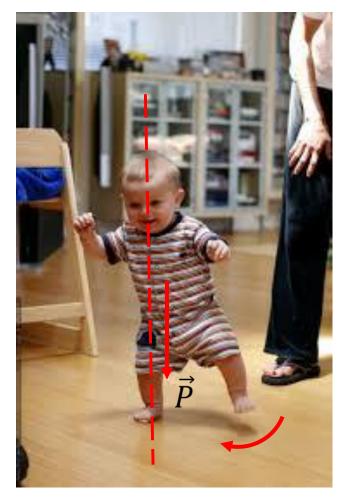
Instabilidade

Alexa Scimeca-Knierim e Christopher Knierim (EUA)

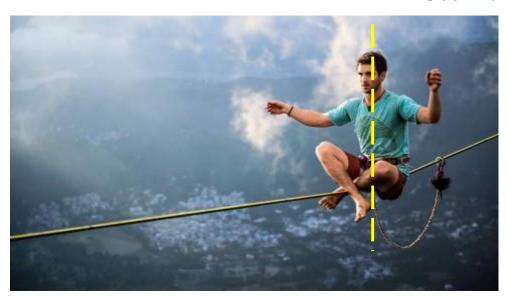


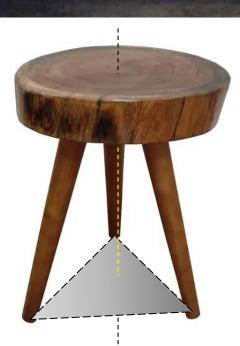
Slackline

Bebê em desenvolvimento



*Trave*Daniele Hypólito





Centro de Massa

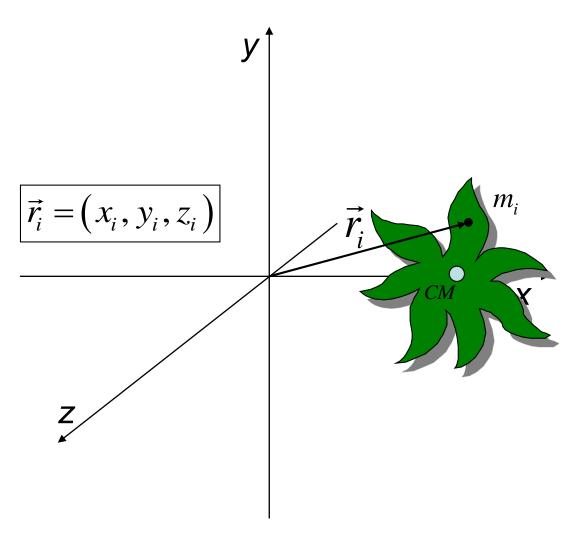
É um ponto imaginário onde <u>toda a massa</u> do sistema pode ser concentrada, e para o qual as Leis de Newton para a translação e para a rotação podem ser aplicadas.

$$x_{CM} = \frac{\sum_{i=1}^{n} m_i . x_i}{M_{total}}$$

$$y_{CM} = \frac{\sum_{i=1}^{n} m_i.y_i}{M_{total}}$$

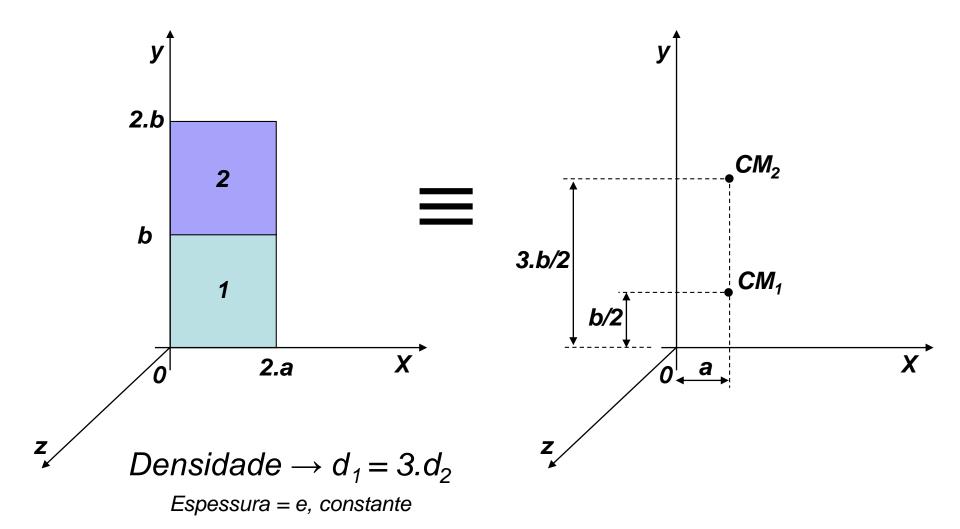
$$z_{CM} = \frac{\sum_{i=1}^{n} m_i . z_i}{M_{total}}$$

Unidade (S.I.): [m]



Exercício

 Determinar a posição do Centro de Massa do objeto abaixo, em relação ao sistema de referência:



Resolução:

$$d = \frac{m}{V} \rightarrow m = d.V \qquad V_{1,2} = 2. a. b. e$$

$$m_1 = d_1. V_1 \rightarrow m_1 = 3. d_2. 2. a. b. e$$

$$m_2 = d_2. V_2 \rightarrow m_2 = d_2. 2. a. b. e$$

$$m_{total} = 8. d_2. a. b. e$$

• Em relação ao eixo x:

$$x_{CM} = \frac{\sum_{i=1}^{n} m_i . x_i}{M_{total}}$$

$$x_{CM} = \frac{m_1.x_1 + m_2.x_2}{m_1 + m_2} \to$$

$$x_{CM} = \frac{3. d_2. 2. a. b. e. (+a) + d_2. 2. a. b. e. (+a)}{3. d_2. 2. a. b. e + d_2. 2. a. b. e} \rightarrow$$

$$x_{CM} = \frac{6. d_2. a^2. b. e + 2. d_2. a^2. b. e}{6. d_2. a. b. e + 2. d_2. a. b. e} \rightarrow$$

$$x_{CM} = \frac{8. d_2. a^2. b. e}{8. d_2. a. b. e} \rightarrow x_{CM} = +a$$

o que já era esperado pela simetria do sistema. • Em relação ao eixo y:

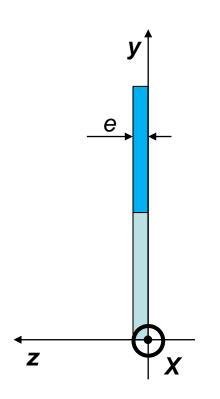
$$y_{CM} = \frac{\sum_{i=1}^{n} m_i . y_i}{M_{total}}$$

$$y_{CM} = \frac{m_1.y_1 + m_2.y_2}{m_1 + m_2} \to$$

$$y_{CM} = \frac{3.\,d_2.\,2.\,a.\,b.\,e.\left(+\frac{b}{2}\right) + d_2.\,2.\,a.\,b.\,e.\left(+\frac{3.\,b}{2}\right)}{8.\,d_2.\,a.\,b.\,e} \,\to\,$$

$$y_{CM} = \frac{3. d_2 \cdot a. b^2 \cdot e. + 3. d_2 \cdot a. b^2 \cdot e}{8. d_2 \cdot a. b. e} \rightarrow y_{CM} = \frac{6. b}{8} \rightarrow y_{CM} = +\frac{3. b}{4}$$

• Em relação ao eixo z:



$$z_{CM} = \frac{\sum_{i=1}^{n} m_i . z_i}{M_{total}}$$

$$z_{CM} = \frac{m_1. z_1 + m_2. z_2}{m_1 + m_2} \to$$

$$z_{CM} = +\frac{e}{2}$$

o que já era esperado pela simetria do sistema.

Centro de Massa do sistema:

$$(x_{CM}; y_{CM}; z_{CM}) \rightarrow$$

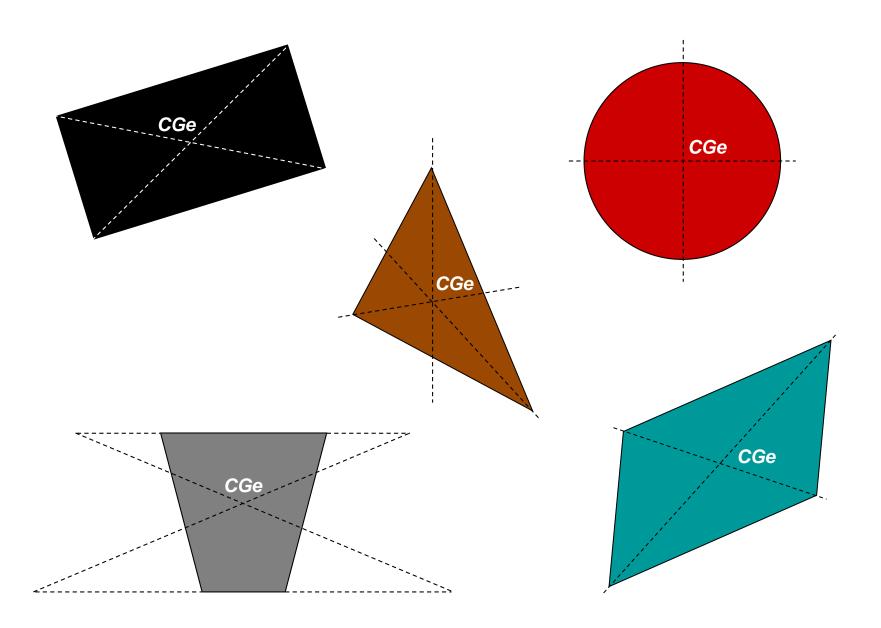
$$\left(+a; +\frac{3.b}{4}; +\frac{e}{2}\right)$$

Não se esqueça de assistir aos seguintes vídeos:

https://www.youtube.com/watch?v=dR-945iACV8 - Centro de Massa

https://www.youtube.com/watch?v=NpkGVys0yc0 - Centro de Massa

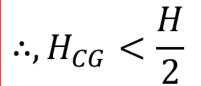
Centro Geométrico

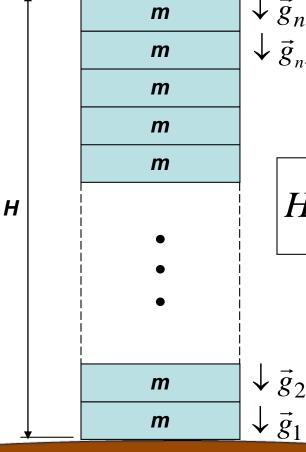


Centro de Gravidade

É um ponto imaginário, onde todo o peso do sistema pode ser concentrado.

$$\vec{P} = m.\,\vec{g}$$





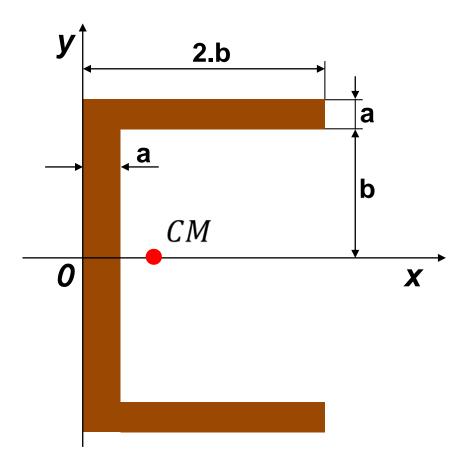
$$\downarrow \vec{g}_n \to \vec{P}_n
\downarrow \vec{g}_{n-1} \rangle \vec{g}_n \therefore \vec{P}_{n-1} \rangle \vec{P}_n$$

$$H_{CM} = H_{CGe} = \frac{H}{2}$$

$$\downarrow \vec{g}_2 \langle \vec{g}_1 :: \vec{P}_2 \langle \vec{P}_1 \rangle
\downarrow \vec{g}_1 \to \vec{P}_1$$

Exercício

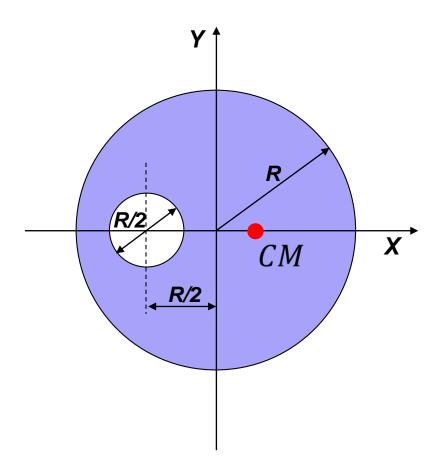
18. Determinar a posição do Centro de Massa do objeto abaixo, em relação ao sistema de referência:



Considerar a densidade do material igual a $\underline{\mathbf{d}}$ e a espessura igual a $\underline{\mathbf{e}}$.

Exercício

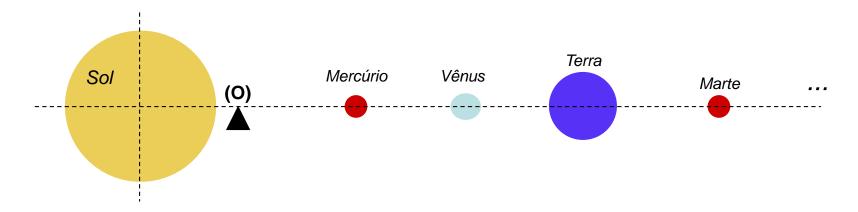
19. Determinar as coordenadas (x,y) do centro de massa do seguinte objeto, em relação ao sistema de referência:



Considerar a densidade do material igual a $\underline{\mathbf{d}}$ e a espessura igual a $\underline{\mathbf{e}}$.

<u>Exercício</u>

20. Usando os dados da tabela abaixo e considerando que todos os planetas do sistema solar estejam alinhados, estime a posição de seu centro de massa (para resolver o problema, imagine, por exemplo, um ponto de apoio entre o centro de massa do Sol e o de Mercúrio. Imagine cada objeto como sendo uma esfera perfeita, com sua massa distribuída uniformemente em seu volume. Que aproximação pode ser feita?).

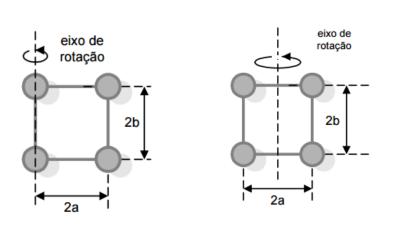


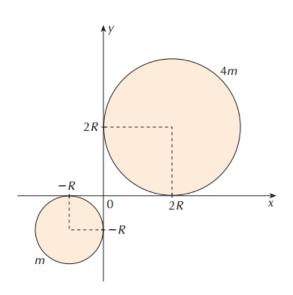
	<u>Mercúrio</u>	<u>Vêms</u>	<u>Terra</u>	<u>Marte</u>	<u>Júpiter</u>	<u>Sa turno</u>	<u>Urano</u>	<u>Netuno</u>
Diâmetro (Terra = 1)	0,382	0,949	1	0,532	11,209	9,44	4,007	3,883
Diâmetro (km)	4.878	12.104	12.756	6.787	142.800	120.000	51.118	49.528
Massa (,10*24 kg)	0,330	4,87	5,97	0,642	1899	568	86,8	102
Distância média do Sol ("10 ⁺⁶ km)	57,9	108,2	149,6	227,9	778,6	1433,5	2872,5	4495,1

Massa do Sol = 1,9891 x 10^{+30} kg Diâmetro do Sol = 1,39 x 10^{+9} m

+ Exercícios

- 21. Uma estrela esférica gira por um período de 30 dias em torno de um eixo que passa pelo seu centro. Depois que a estrela sofre uma explosão **supernova**, o núcleo estelar, que tinha um raio de 1,0x10⁴ km, sofre colapso em uma estrela de 3,0 km de raio. Determine o período de rotação da estrela de nêutron (0,23s).
- 22. A figuras mostram dois sistemas compostos por quatro partículas puntiformes de mesma massa *M*, fixas a uma grade retangular de lados *2a* e *2b* e massa desprezível. a) Determine o momento de inércia *I* do sistema em relação ao eixo indicado. b) por que o momento de inércia independe de *b*?



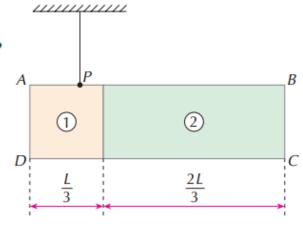


23. (UFC-CE) Dois discos, de densidades uniformes e espessuras desprezíveis, são colocados no plano xy, conforme mostra a figura. Se $R = 10\sqrt{2}$ cm, calcule, em centímetros, a distância entre o centro de massa do conjunto e a origem, do sistema cartesiano xy.

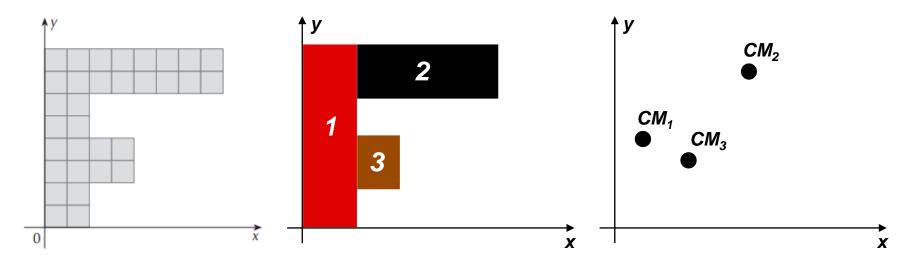
24. (Fuvest-SP) Uma placa retangular de comprimento L é constituída pela união de duas partes 1 e 2, como mostra a figura abaixo. A parte 1 é feita de material de massa específica ρ_1 e a parte 2 de material de massa específica ρ_2 . Suspendendo-se a placa pelo ponto P, de acordo com a figura (AB horizontal), ela permanece em equilí-

brio. Sabe-se que $AP = \frac{2L}{9}$.

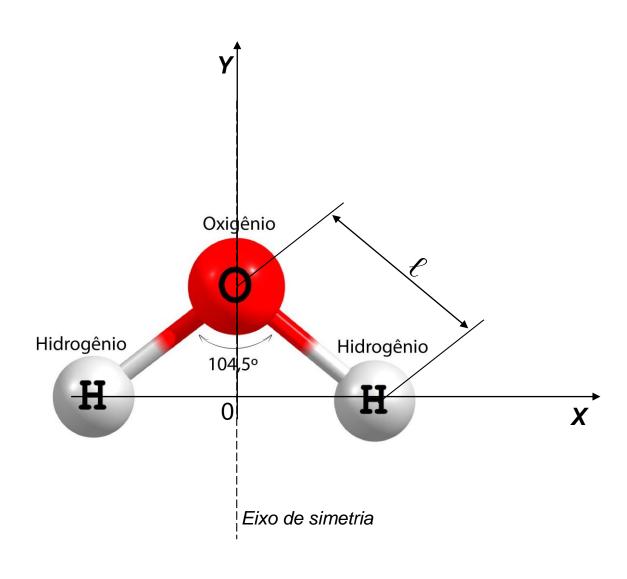
- a) A que distância do lado AD encontra-se o centro de massa da placa?
- b) Determine a razão $\frac{\rho_1}{\rho_2}$.



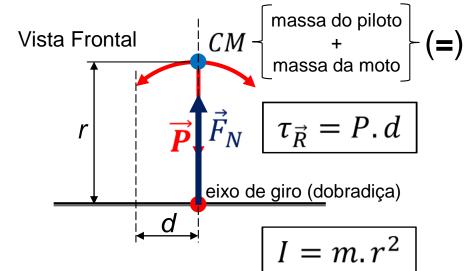
25. (UnB) Na figura abaixo, que representa uma placa homogênea, admita que cada quadrado tenha lado igual a 10 cm. Determine, em centímetros, a soma das coordenadas do ponto correspondente ao centro de massa da placa, caso exista.



26. Estimar o centro de massa da molécula de água. Dados: m_H : 1,00794 u.; m_{H2O} = 18,015 u.; comprimento da ligação, ℓ = 96nm.



Exemplo de Aplicação



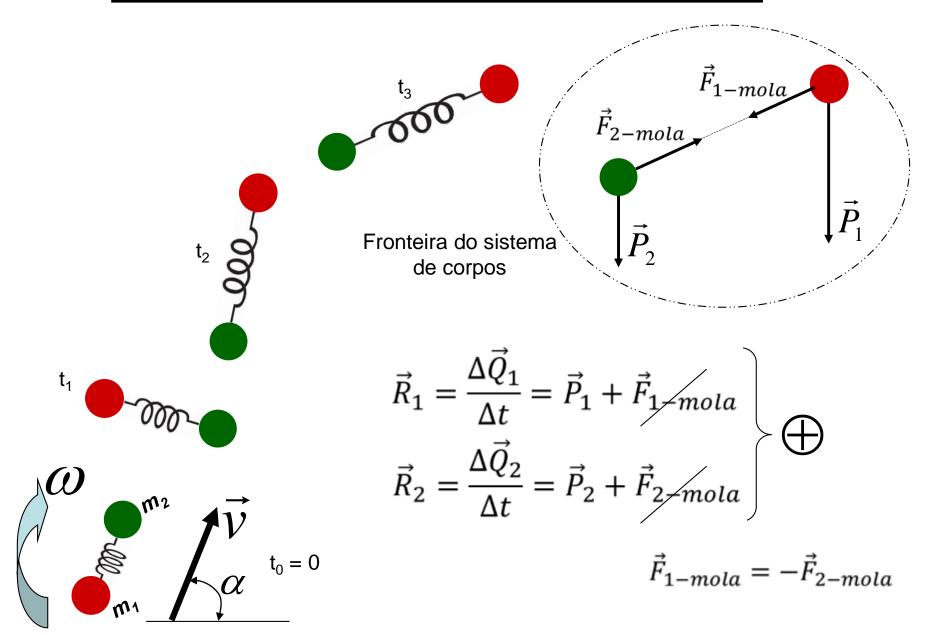
Pontos de contato

$$au_{ec{R}} = I.\gamma$$

$$\gamma = \frac{\Delta\omega}{\Delta t}$$

$$\tau_{\vec{R}} = , \Delta \omega = , \downarrow CM, < I, < \Delta t$$

Análise do Movimento do Centro de Massa



$$\begin{split} \frac{\Delta \vec{Q}_1}{\Delta t} + \frac{\Delta \vec{Q}_2}{\Delta t} + \cdots &= \vec{R}_1 + \vec{R}_2 + \cdots = \vec{P}_1 + \vec{P}_2 + \cdots \\ \frac{\left(\Delta \vec{Q}_1 + \Delta \vec{Q}_2 + \cdots\right)}{\Delta t} &= \sum_{i=1}^n \vec{R}_i = \vec{R}_{total} = \vec{P}_1 + \vec{P}_2 + \cdots \end{split}$$

$$\frac{\Delta Q_{total}}{\Delta t} = \vec{R}_{total} \longrightarrow \Delta \vec{Q}_{CM} = \vec{R}_{CM}.\Delta t = \vec{I}_{CM}$$

 $\Delta \vec{Q}_{total}$ é o momento linear (ou quantidade de movimento) do <u>Centro de Massa</u> do sistema.

 $\Delta \vec{Q}_{CM}$

 \hat{R}_{total} é a resultante de todas as forças externas, que atua sobre o <u>Centro de Massa</u> do sistema de partículas.

 \vec{R}_{CM}

 \vec{l}_{CM} é o impulso total que provoca a variação da quantidade de movimento do <u>Centro de Massa</u> do sistema de partículas.

O movimento do sistema de partículas é determinado <u>somente pelas</u> <u>forças externas</u>, e esse sistema se comporta como se toda massa distribuída nele estivesse concentrada em seu **Centro de Massa**.

Dessa forma, analisar o movimento complexo de um sistema de partículas é similar à análise do movimento de seu <u>Centro de Massa</u>.

Assista aos vídeos:

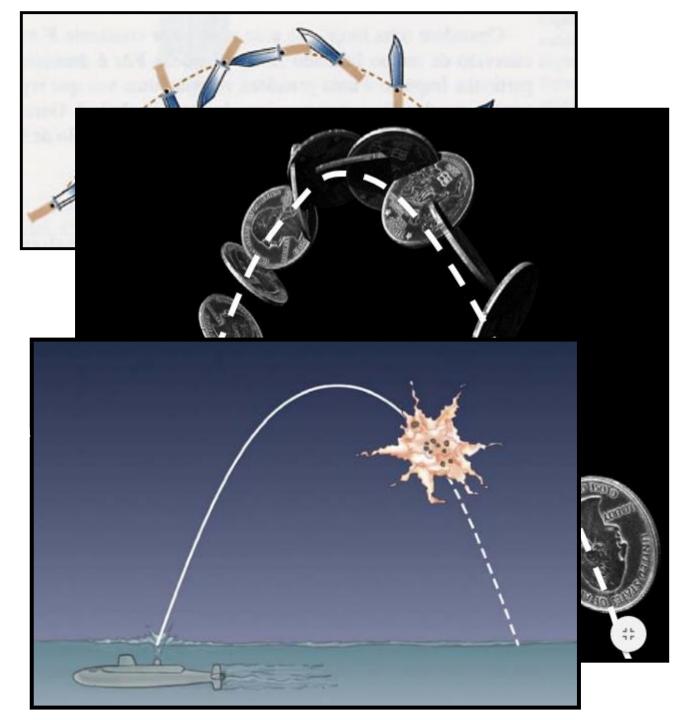
https://www.youtub e.com/watch?v=bU bV2iQw2tk

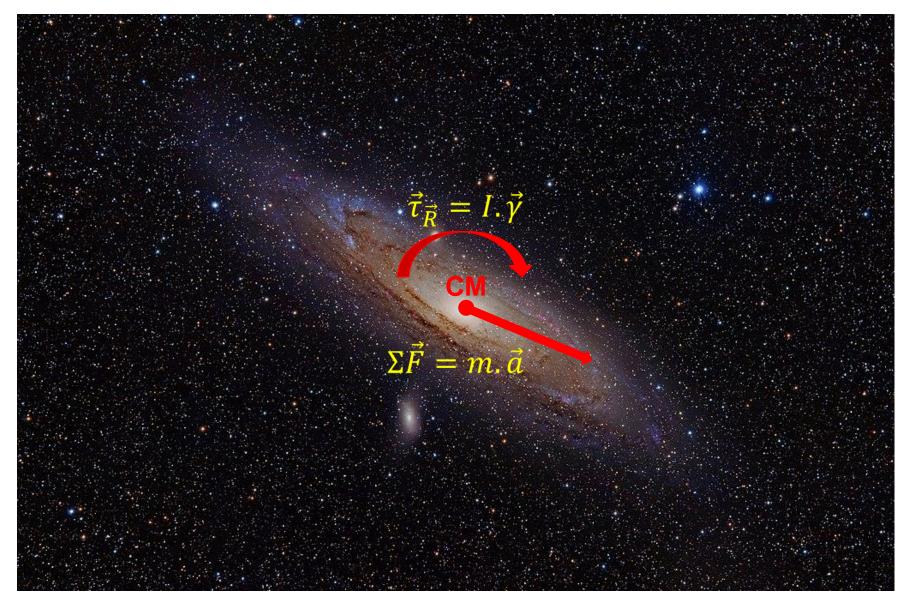
https://www.youtub e.com/watch?v=25f HOKEX558

https://www.youtub e.com/watch?v=t0N 2ba4RCXY

https://www.youtub e.com/watch?v=gF zq88kMGZo

https://www.youtub e.com/watch?v=5K S4DCdleJw





Galáxia de Andrômeda (Messier 31 – NGC 224)

Distância = $2,54.10^{+6}$ de anos-luz

Massa entre $0,8 - 1,5.10^{+12}$ massas solares

≈ 1.10^{+12} estrelas

27. Um peixe de 8,6kg, nadando para direita a 1m/s, engole um peixe de 0,4kg, que nada ao seu encontro a 3,5m/s, como indicado na figura. Determine o módulo da velocidade do centro de massa.

$$Y_{CM \ 1,2} = 0$$

$$X_{CM \ 1,2} = \frac{M \cdot x_{CM_1} + m \cdot x_{CM_2}}{M + m}$$

$$X_{CM \ 1,2} = \frac{8,6.0 + 0,4. (+4,5)}{9}$$

$$X_{CM \ 1,2} = 0,2m$$

Sobre cada peixe, existem duas forças agindo na direção vertical: a força <u>Peso</u>, apontando no sentido do centro do planeta, e uma força chamada <u>Empuxo</u>, que aponta para cima e está associada às diferentes pressões aplicadas pelo fluido (água) sobre a superfície mergulhada de um corpo. Essas forças se anulam mutuamente. Dessa forma, como inexiste movimento acelerado na vertical, o <u>Impulso da Resultante das Forças, sobre cada peixe, é nulo nesta direção</u>.

Como as velocidades dos peixes são constantes na direção do movimento (aceleração horizontal é nula), o *Impulso da Resultante das Forças, sobre cada peixe, também é nulo*.

Do Princípio Fundamental da Dinâmica para o sistema,

$$\Delta \vec{Q}_{CM} = \Sigma \vec{R}_{CM} \cdot \Delta t = \vec{I}_{CM}$$

No caso do problema, $\Delta \vec{Q}_{CM} = \vec{0}$

$$v_{CM} = \frac{\sum_{i=1}^{n} m_i. v_i}{\sum_{i=1}^{n} m_i}$$
 $v_{CM} = \frac{8,6. (+1) + 0,4. (-3,5)}{8,6 + 0,4} \rightarrow$

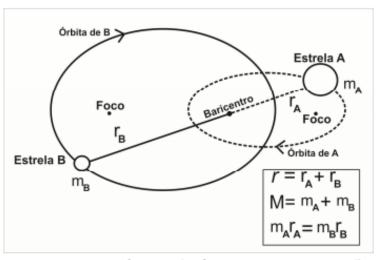
$$v_{CM} = +0.8 \frac{m}{s}$$

Esse valor já havia sido calculado em um exercício anterior, aquele que pedia a velocidade final dos dois peixes, após o peixe maior engolir o menor. Contudo, o valor acima <u>sempre</u> esteve associado ao movimento dos dois peixes, se mantidas as condições desses movimentos, independentemente de um ter engolido o outro.

28. O Sol é uma estrela isolada, mas a maioria delas são binárias, ou seja, ambas giram em torno do baricentro do sistema. Conhecer a massa das estrelas é fundamental em Astronomia. Ao lado mostramos o esquema de um sistema binário típico, visto "de cima".

Pela lei da gravitação universal sabemos que a força gravitacional, F_g , entre ambas as estrelas é

$$F_g = \frac{Gm_Am_B}{r^2},$$



onde G é a constante da gravitação universal, m_A e m_B as massas das estrelas e r a separação entre elas. Suponha que ambas descrevam trajetórias quase circulares em torno do baricentro. Neste caso a força centrípeta, F_c , sobre qualquer das estrelas, da "A", por exemplo, é dada por:

 $F_c = \frac{m_A v_A^2}{r_A}$ e é igual à força gravitacional entre elas, ou seja: $F_g = F_c$.

A velocidade v_A pode ser medida pelo período orbital, T, da estrela "A", ou seja,

$$v_A = \frac{2\pi r_A}{T}$$
.

Em sistemas binários os períodos orbitais das estrelas são sempre iguais, pois ambas giram em torno do baricentro, no mesmo período e estão sempre diametralmente opostas.

Use as equações acima e demonstre que, em função de apenas π , G, r e T, podemos determinar a soma das massas, $M = m_A + m_B$, das estrelas.

Observação: A equação determinada também é conhecida como a 3ª lei de Kepler ou lei dos Períodos ou ainda lei Harmônica.

Continuando,
$$ec{ au}_{ec{R}} = I.ec{\gamma}$$

Porém,
$$\vec{\gamma} = \frac{\Delta \vec{\omega}}{\Delta t}$$

$$\vec{\tau}_{\vec{R}} = I. \frac{\Delta \omega}{\Delta t}$$

Momento Angular

$$\vec{L} = I.\vec{\omega} \left[\frac{kg.m^2}{s} \right]$$

$$\vec{\tau}_{\vec{R}} = I.\frac{\Delta \omega}{\Delta t}$$

$$\vec{L} = I.\vec{\omega} \left[\frac{kg.m^2}{s}\right]$$

$$\vec{\tau}_{\vec{R}} = I.\left(\frac{\vec{\omega}_f - \vec{\omega}_i}{\Delta t}\right) \longrightarrow \vec{\tau}_{\vec{R}} = \frac{I.\vec{\omega}_f - I.\vec{\omega}_i}{\Delta t}$$

$$\vec{I} = \vec{I}$$

$$\vec{\tau}_{\vec{R}} = \frac{\vec{I}.\vec{\omega}_f - \vec{L}.\vec{\omega}_i}{\Delta t}$$

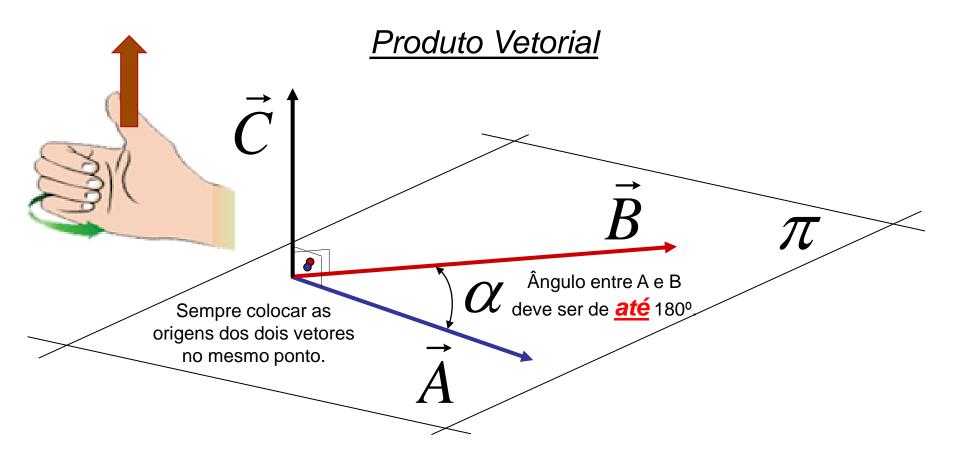
$$ec{ au}_{ec{R}} = rac{ec{L}_f - ec{L}_i}{\Delta t}$$

"A aplicação de um Torque externo sobre um corpo, durante um intervalo de tempo Δt , provoca uma variação em seu Momento Angular."

$$ec{ au}_{ec{R}} = rac{\Delta ec{L}}{\Delta t}$$

"Princípio Fundamental da Dinâmica de Rotações"

[N.m]



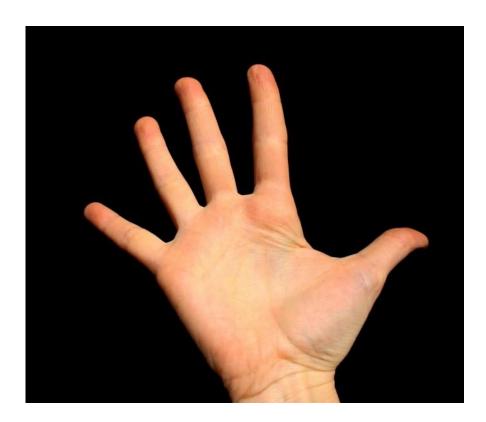
$$\vec{C} = \vec{A} \times \vec{B}$$

Módulo
$$\rightarrow$$
 $\left| \vec{C} \right| = \left| \vec{A} \right| \cdot \left| \vec{B} \right| \cdot sen \alpha$

Direção ightarrow Perpendicular ao plano $\mathcal T$

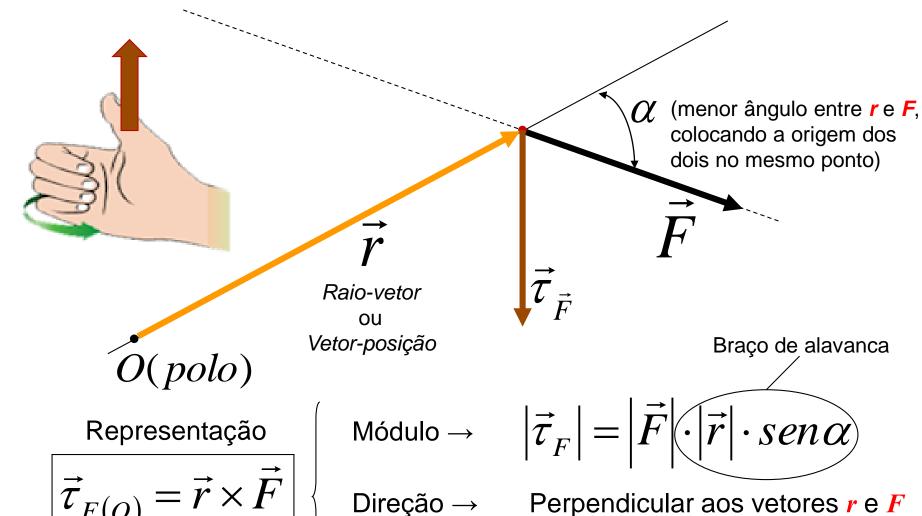
Sentido → Regra da mão direita (polegar)

A mão direita



Palma

Momento de uma Força em relação a um ponto (ou Torque)



Sentido →

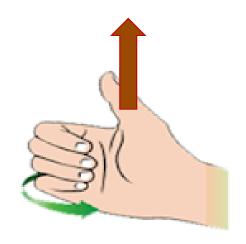
Perpendicular aos vetores r e F

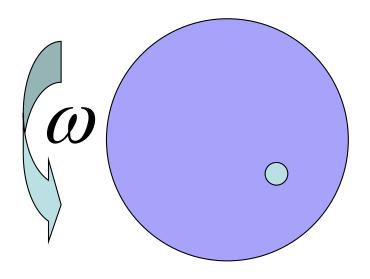
Regra da mão direita

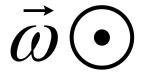
Movimento Circular

Representação do vetor velocidade angular

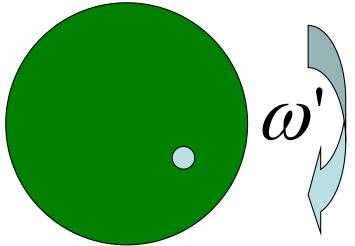
A direção e o sentido do vetor velocidade angular são dados pela **regra da mão direita**.







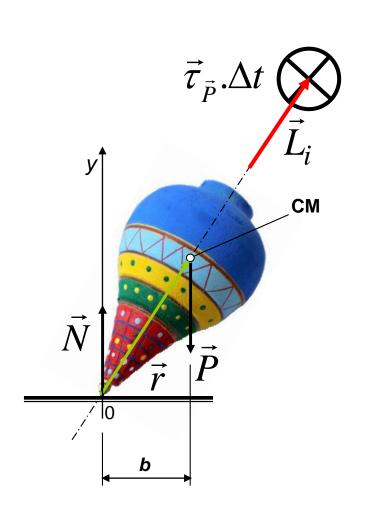
Representação de um vetor **saindo** do plano



Representação de um vetor **entrando** no plano

Estudo de caso

Lançamento de pião



$$\vec{\tau}_{\vec{R}} = \frac{\Delta L}{\Delta t}$$

$$\vec{\tau}_{\vec{R}}.\Delta t = \Delta \vec{L}$$

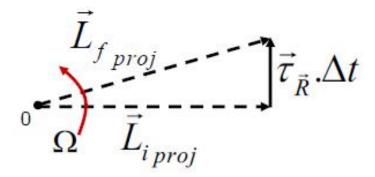
onde,
$$ec{ au}_{ec{P}(O)} = ec{r} imes ec{P}$$

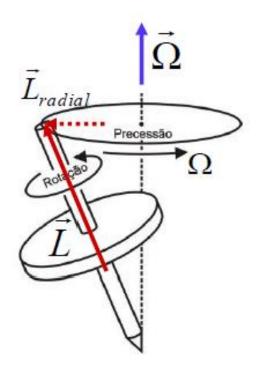
cujo módulo vale $au_P = m.g.b$

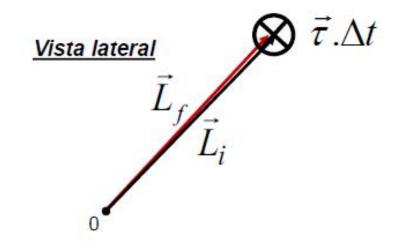
$$\vec{\tau}_{\vec{P}}.\Delta t = \vec{L}_f - \vec{L}_i$$

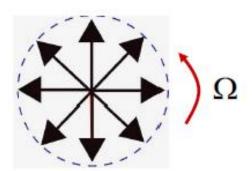
$$ert ec{L}_f = ec{L}_i + ec{ au}_{ec{P}}.\Delta t$$

Vista superior









Movimento do vetor L_{radial}

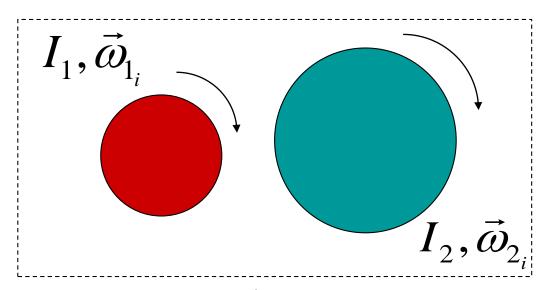
Ω → vetor velocidade angular do movimento do vetor *momento angular L* em torno de um eixo vertical → *Movimento de Precessão* .

Análise de caso

Curva com bicicleta ou moto

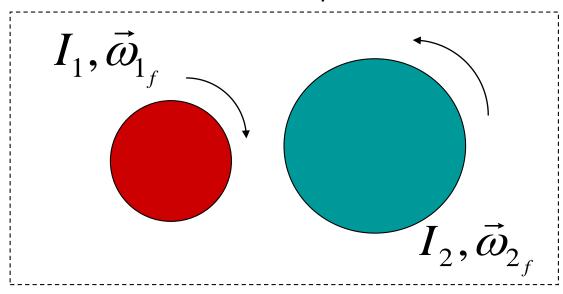
$$|\vec{L}_f| = \vec{L}_i + \vec{\tau}_{\vec{P}} \cdot \Delta t$$

Em um sistema mecanicamente isolado, isto é, livre da ação de torques externos



 t_i (instante imediatamente antes)

 t_f (instante imediatamente depois)



Do Princípio da Ação/Reação Rotacional vem que $| au_1|_2 = - au_2|_1$

$$I_{1}.\vec{\gamma}_{1} = -I_{2}.\vec{\gamma}_{2} \longrightarrow \vec{\gamma} = \frac{\Delta\vec{\omega}}{\Delta t} \longrightarrow I_{1}.\frac{\Delta\vec{\omega}_{1}}{\Delta t_{1}} = -I_{2}.\frac{\Delta\vec{\omega}_{2}}{\Delta t_{2}}$$

$$I_{1}.\gamma_{1} = I_{2}.\gamma_{2} \qquad \gamma = \Delta t \qquad I_{1}. \Delta t_{1} = I_{2}. \Delta t_{2}$$

$$I_{1}.\frac{\left(\vec{\omega}_{1_{f}} - \vec{\omega}_{1_{i}}\right)}{\Delta t_{1}} = -I_{2}.\frac{\left(\vec{\omega}_{2_{f}} - \vec{\omega}_{2_{i}}\right)}{\Delta t_{2}} \qquad \text{Definição:}$$

$$\vec{L} = I. \vec{\omega} \rightarrow \begin{array}{c} \textit{Momento} \\ \textit{Angular} \end{array}$$

Mas
$$\Delta t_1 = \Delta t_2 = \Delta t$$

$$\vec{L} = I.\vec{\omega} \rightarrow \begin{bmatrix} Momento \\ Angular \end{bmatrix}$$

$$+ I_{1}.\vec{\omega}_{1_{f}} - I_{1}.\vec{\omega}_{1_{i}} = -I_{2}.\vec{\omega}_{2_{f}} + I_{2}.\vec{\omega}_{2_{i}}$$

$$+I_1.\vec{\omega}_{{
m l}_i}+I_2.\vec{\omega}_{{
m l}_i}...=+I_1.\vec{\omega}_{{
m l}_f}+I_2.\vec{\omega}_{{
m l}_f}...$$
 para n corpos

$$\sum_{j=1}^{n} ec{L}_{j_{inicial}} = \sum_{j=1}^{n} ec{L}_{j_{final}}$$
 "Lei de Conservação do Momento Angular"

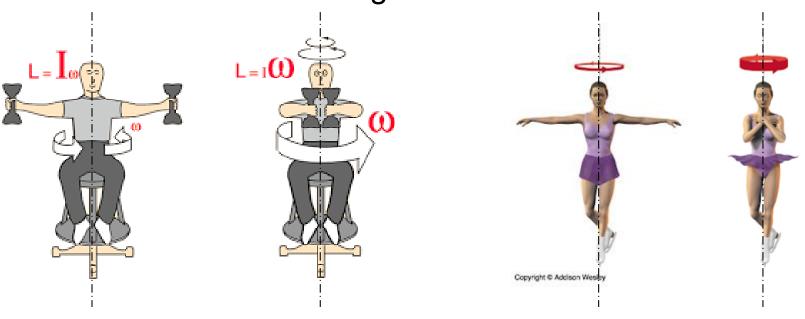
"Lei de Conservação do Momento Angular"

$$\sum_{j=1}^{n} \vec{L}_{j_{inicial}} = \sum_{j=1}^{n} \vec{L}_{j_{final}}$$

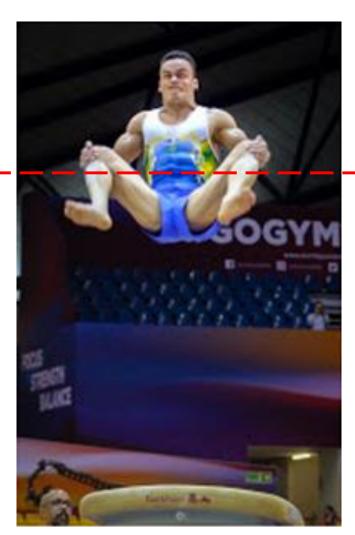
Unidades de <u>L</u>:

$$\left[\frac{kg.m^2}{s}\right]$$

"Em um sistema mecanicamente isolado, o momento angular se conserva."



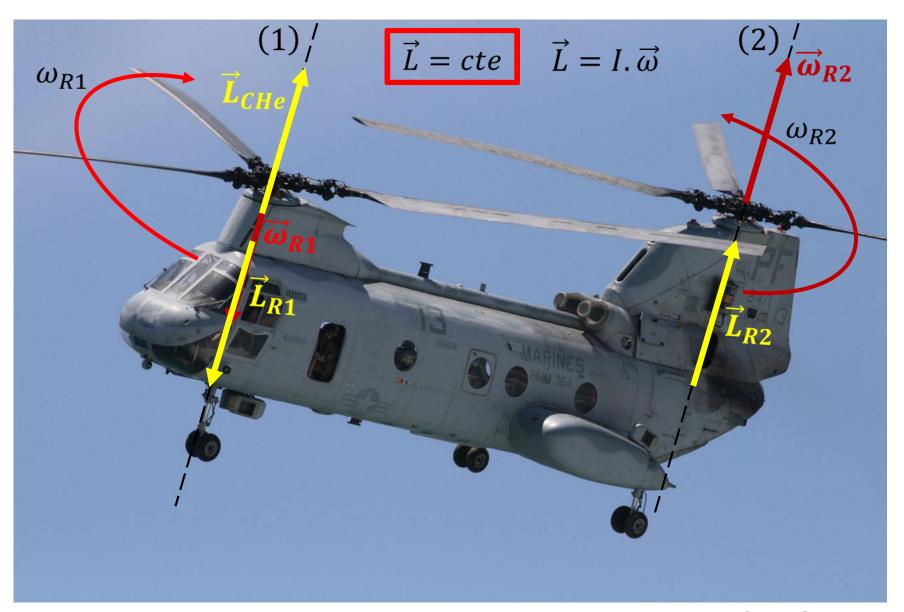
Caio Souza



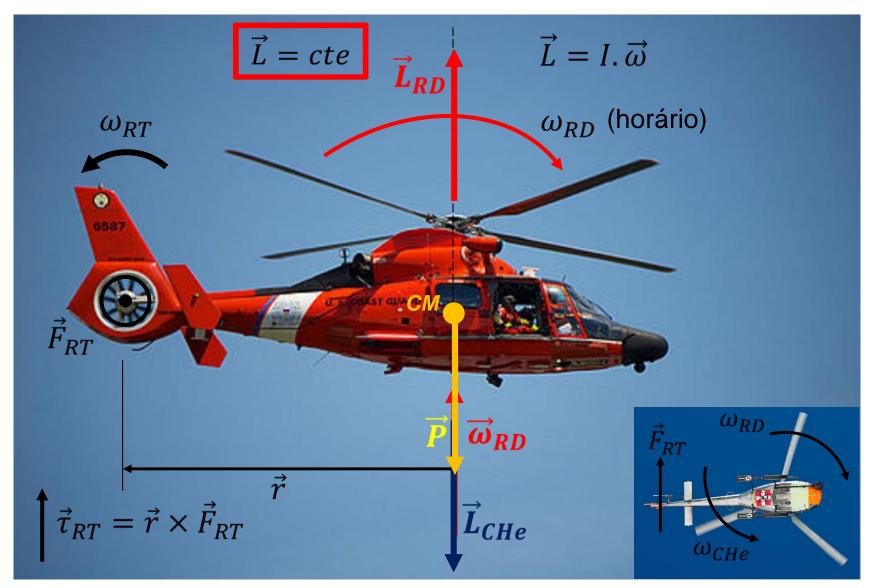
Saltos Ornamentais

Streetdance

Motocross



Russian Navy Ka-29 Helix-B assault helicopter



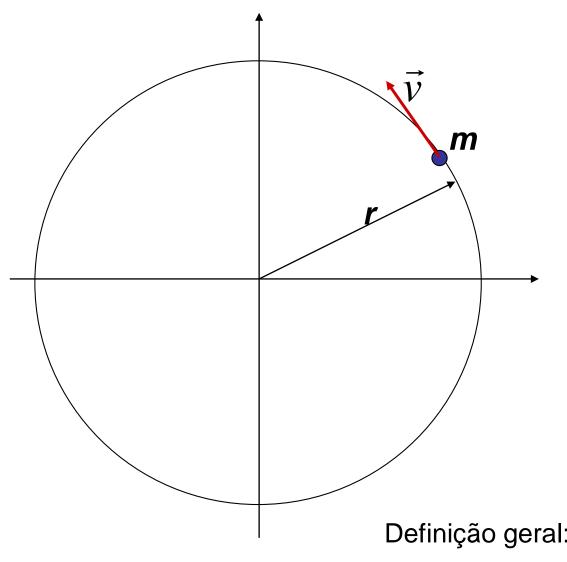
U.S. Coast Guard helicopter in flight

Não se esqueça de assistir aos seguintes vídeos:

https://www.youtube.com/watch?v=3sZfccowDrk - Produto Vetorial, Momento Angular e Lei de Conservação

<u>https://www.youtube.com/watch?v=ORauOfpmkJQ</u> - Demonstração sobre Lei de Conservação

Energia Cinética Rotacional



$$E_{cin} = \frac{1}{2} \cdot m \cdot v^2$$

$$E_{cin} = \frac{1}{2} \cdot m \cdot (\omega \cdot r)^2$$

$$E_{cin} = \frac{1}{2} \cdot \left(m \cdot r^2 \right) \cdot \omega^2$$

Definição geral:
$$E_{rot}$$

Definição geral:
$$E_{rot} = \frac{1}{2} \cdot I \cdot \omega^2$$
 J

KERS – Sistema de Recuperação de Enegia Cinética

(kinetic energy recovery system)

Volvo XC90 Inscription T8

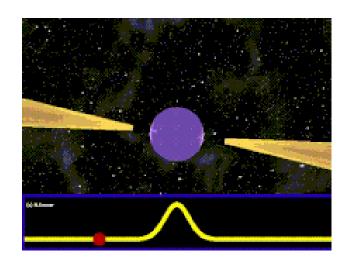
Roda de Inércia (Flywheel):

- $Ø_{ext} = 240 \text{ mm}$
- Massa = 5 kg
- Rotação máxima = 64.500 rpm

Calcule a energia cinética máxima armazenada, em joule, neste modelo de KERS.

Exercícios

- **8. Energia cinética da Terra**. Consideremos a divisão da energia cinética da Terra em duas partes: uma parte para o movimento orbital do centro de massa e a outra parte para a rotação em torno de seu eixo. Calcule e compare essas duas energias, supondo uniforme a densidade de massa da Terra. A massa e o raio da Terra são 6,0 x 10⁺²⁴ kg e 6,4 x 10⁺⁶ m, respectivamente. O raio da órbita da Terra é 1,5 x 10⁺¹¹ m.
- 9. Uma estrela de nêutrons típica, ou *pulsar*, tem um raio de uns poucos quilômetros (≈ 15 km), massa aproximadamente igual à do Sol e velocidade angular muito grande. Estime a energia cinética rotacional de uma estrela de nêutrons, cujo período é de 50 ms. Dado: massa do Sol ≈ 2 x 10⁺³⁰ kg.



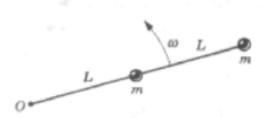
Pulsar do Caranguejo - 1969 Ø ≈ 25 km T = 33 ms

10. Uma hélice de avião tem 3,2 m de ponta a ponta e massa de 35 kg. Qual é a energia cinética rotacional da hélice ao girar a 1.000 rev/min? Considere a hélice como uma haste longa delgada, cujo Momento de Inércia é dado pela seguinte expressão:

$$I = \frac{1}{12} \cdot M \cdot L^2$$

11. Uma roda, girando em torno de um eixo fixo, tem energia cinética de 29 J quando sua velocidade angular é 13 rad/s. Qual é o momento de inércia da roda em relação ao eixo de rotação?

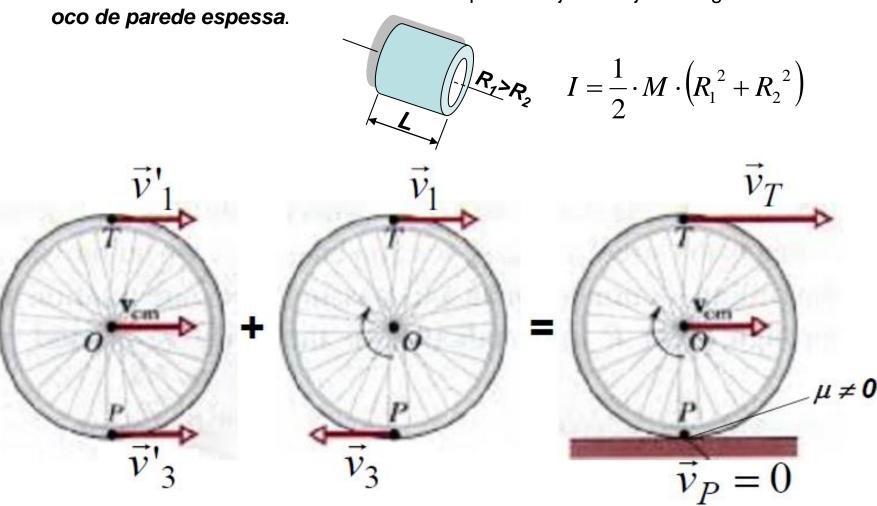
12. Duas partículas, cada uma com massa m, estão unidas uma a outra e a um eixo de rotação por duas hastes, cada uma com comprimento L e massa M, conforme a Fig. 37. O conjunto gira em torno do eixo de rotação com velocidade angular ω. Obtenha uma expressão algébrica para (a) a inércia rotacional do conjunto em torno de O e (b) a energia cinética de rotação em torno de O.



13. O motor de um pequeno aeroplano é especificado como capaz de gerar um torque de 60 N.m. O motor faz girar uma hélice de 2 m de comprimento entre as extremidades das pás e massa de 40 kg. Na partida, quanto tempo leva para a hélice atingir 200 rpm?

Dado:
$$I = \frac{1}{12} \cdot M \cdot L^2$$

14. Estime a energia cinética total de um conjunto roda/pneu com massa $\underline{\textit{M}}$, raio maior $\underline{\textit{r}}_1$ e raio menor $\underline{\textit{r}}_2$, que executa um movimento de **rolamento** com velocidade $\underline{\textit{V}}$ medida em seu centro de massa. **Dica:** considere que o conjunto seja análogo a um **cilindro**



15. Estime a energia cinética total, em joule, de um conjunto roda/pneu que se solta de um veículo a 50km/h e continue rolando. Compare esse resultado com a queda de uma pessoa (70kg), *deitada*, de uma altura de 2m (g = 10m/s²).

Dica: considere que a massa do pneu esteja distribuída em um *cilindro oco de parede espessa*, onde o diâmetro menor vale 15" (polegadas) e o raio maior é o raio menor mais 0,65 vezes a largura do pneu (195mm). Para a roda, considere-a um disco de parede espessa.

1" → 25,4mm

Pneu Aro 15" Pirelli 195/65R15 91 (615 kg) H (210 km/h) *P400 EVO*, massa 8,18kg Roda KR Wheels aro 15", de liga leve, massa 10kg

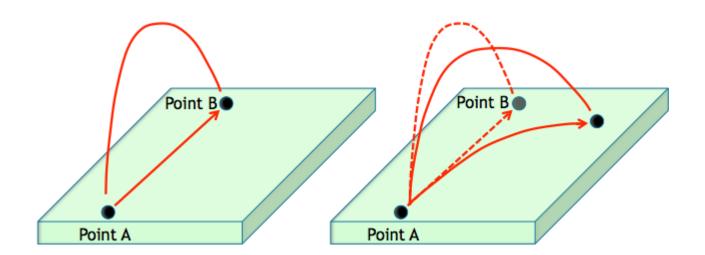
Referências Sitiográficas

- https://www.mar.mil.br/dhn/dhn/ead/pages/fisica/unidade8/material.htm
- http://www.uranometrianova.pro.br/jornal/ca/CoelumAustrale_024.pdf
- http://www.fisicaju.com.br/momentoangular.pdf
- http://www.moderna.com.br/fundamentos/temas_especiais/centrodemassa.pdf
- http://sistemas.eel.usp.br/docentes/arquivos/2166002/LOB1018/1_a_Auladocap09CentrodeMassa.pdf
- https://www.youtube.com/watch?v=ke0iusvydl8 (Ilya Lipnitskaya)
- https://www.youtube.com/watch?v=JulHWcgu_GQ (Red Bull 2006)
- https://www.youtube.com/watch?v=w1cu64CDJ3E (amazing)
- https://www.youtube.com/watch?v=M8ObznMp3V8 (x games moto)
- •https://www.youtube.com/watch?v=25fHOKEX558 (moto)
- http://astro.if.ufrgs.br/bin/binarias.htm (cm estrela binária)
- http://arquivos.ufs.br/egsantana/dinamica/con_mlineal/dinamica/dinamica.htm#Dinámica de un sistema de partículas
- https://noticias.uol.com.br/ciencia/ultimas-noticias/bbc/2017/11/14/alem-de-rotacao-e-translacao-3-movimentos-que-a-terra-faz-e-que-poucos-conhecem.htm
- https://sites.google.com/site/solitonsufg/4-3--conservacao-de-momentum-angular?tmpl=%2Fsystem%2Fapp%2Ftemplates%2Fprint%2F&showPrintDialog=1
- https://www.youtube.com/watch?v=TtRwGWhk7H8 Verve Científica Giroscópio

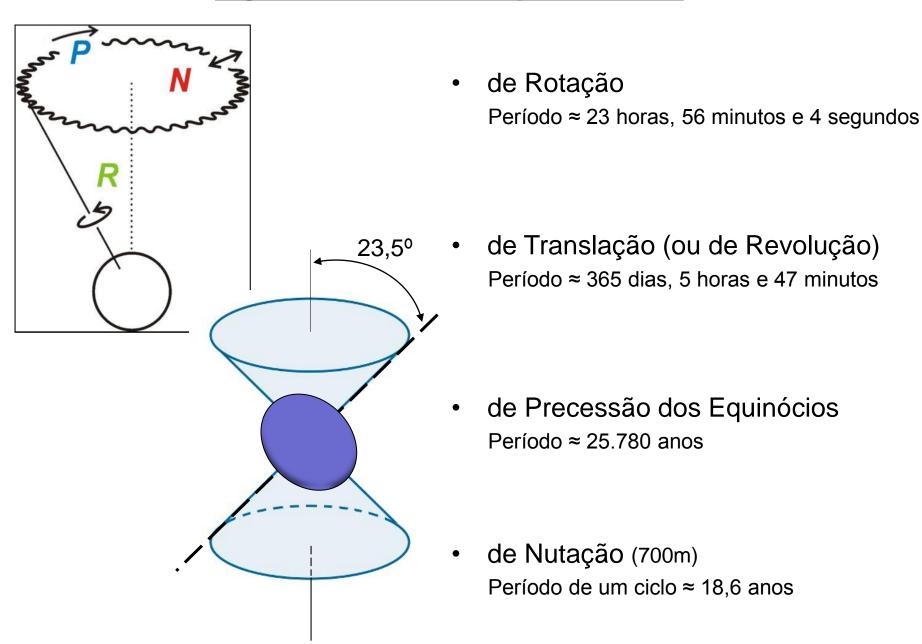
Referências Sitiográficas

- https://propg.ufabc.edu.br/mnpef-sites/leis-de-conservacao/cinematica-e-dinamica-de-rotacoes/
- · https://pt.wikipedia.org/wiki/Pulsar
- https://www.esfera.com.vc/p/pneu-aro-15-pirelli-195-65r15-91h-p400evo/e100024734#:~:text=Material%3A%20Borracha.&text=Peso%20aproximado%3A%20Peso%20do%20produto,embal agem%3A%208%2C18%20kg
- https://carros.ig.com.br/2022-04-23/papo-cabeca--por-que-nao-colocar-rodas-grandes-no-seu-carro-.html

Movimento Circular - Referencial não-inercial



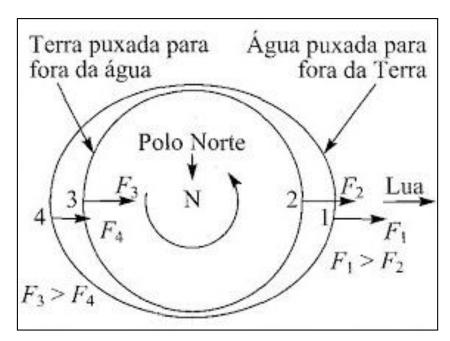
Alguns movimentos do planeta Terra



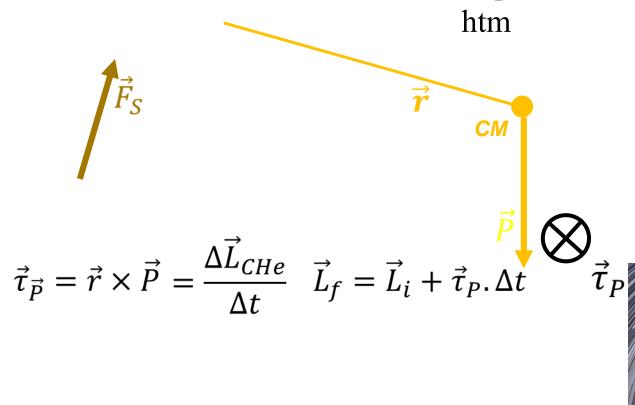
Movimento de Precessão do planeta Terra

$$F_{grav} = G.\frac{M_{Lua}.M_{Terra}}{d^2}$$

Efeitos de *Maré*



Movimento de Precessão do planeta Terra



Estrela *Polaris*

$$\vec{ au}_P$$

$$\vec{ au}_P = \vec{r} \times \vec{P} = \frac{\Delta \vec{L}_{CHe}}{\Delta t} \quad \vec{L}_f = \vec{L}_i + \vec{ au}_P.\Delta t$$