LOGARÍTMOS - APLICAÇÃO

- 1. (FGV-88) Daqui a t anos o valor de um automóvel será $V=2000(0,75)^t$ dólares. A partir de hoje, daqui a quantos anos ele valerá metade do que vale hoje? Adote $\log 2=0,3$ e $\log 3=0,48$. (2,5 anos)
- 2. O pH de uma solução é definido por $pH = \log_{10} \left(\frac{1}{H^+} \right)$, em que H^+ é a concentração de hidrogênio em íons-grama por litro de solução. Determine o pH de uma solução tal que $H^+ = 1.0 \times 10^{-8}$. (pH = 8)
- 3. O crescimento de certa cultura de bactérias obedece à função $X(t) = Ce^{kt}$, em que X(t) é o número de bactérias no tempo $t \ge 0$; C, k são constantes positivas (e é a base do logaritmo neperiano). Verificando que o número inicial de bactérias X(0) duplica em 4 horas, quantas se pode esperar no fim de 6 horas? ($2\sqrt{2}$)
- 4. Uma substância radioativa está em processo de desintegração, de modo que no instante t a quantidade não desintegrada é $A(t) = A(0) \cdot e^{-3t}$, em que A(0) indica a quantidade da substância no instante t=0. Calcule o tempo necessário para que a metade da quantidade inicial se desintegre. ($t=\ln \sqrt[3]{2}$)
- 5. A lei de decomposição do radium no tempo $t \geq 0$ é dada por $M(t) = Ce^{-kt}$, em que M(t) é a quantidade de radium no tempo t; C, k são constantes positivas ($\mathcal E$ é a base do logaritmo neperiano). Se a metade da quantidade primitiva M(0) desaparece em 1600 anos, qual a quantidade perdida em 100 anos? ($\left(1-2^{-\frac{1}{16}}\right)$ da quantidade inicial)
- 6. Um capital C empregado à taxa de 10% ao ano, com juros capitalizados ao final de cada ano, após t anos produzirá um montante M dado por $M = C \times (1,1)^t$. Após quantos anos o capital terá sido dobrado, ou seja, M = 2C? Dados $\log 2 = 0,3010$ e $\log 11 = 1,0414$. (aprox. 7 anos e 3 meses)
- 7. Suponha que uma substância radioativa se desintegre, de modo que partindo de uma quantidade Q_0 , a quantidade existente após t anos seja dada por $Q(t) = Q_0 \cdot e^{-0.05t}$. Dado $\ln 2 = 0.693$, calcule t de modo que se tenha $Q(t) = \frac{Q_0}{2}$. (Este valor de t é denominado *meia-vida* da substância) (aprox. 14 anos)
- 8. Partindo de uma quantidade inicial de \mathcal{Q}_0 bactérias de uma dada espécie, após t horas a quantidade existente é $\mathcal{Q}(t) = \mathcal{Q}_0 \cdot e^{kt}$ onde k é uma constante. Se a quantia inicial dobrar em 1 hora, quanto tempo levará para se ter 1.000.000 de bactérias partindo de uma quantidade inicial de 1.000 bactérias? Dado $\log 2 = 0.3$. (10 horas)
- 9. (PUC-RJ)
- a) No crescimento exponencial $f(t)=c\cdot e^{kt}$, verifique que o valor da função no ponto médio de um intervalo qualquer é a média geométrica dos valores nos extremos desse intervalo. [Média Geométrica: $f\left(\frac{a+b}{2}\right)=\sqrt{f(a)\cdot f(b)}$]
- b) A população mundial em 1950 era de 2,6 bilhões e em 1975 era de 4 bilhões. Admitindo o crescimento exponencial, estime a população no ano 2000. (aprox. 6,2 bilhões)
- 10. Num determinado país, a população cresce a uma taxa de 4% ao ano, aproximadamente. Considerando-se como base o ano de 1990, em quantos anos a população desse país triplicará? Use $\log 3 = 0.4771$ e $\log 1.04 = 0.0170$.(28,06 anos)

- 11. O montante de uma firma é dado pela fórmula $M = C \left(1 + \frac{i}{100}\right)^i$, onde C é o capital, i a taxa e t o tempo de aplicação. Calcular o montante, sabendo que o capital aplicado foi de R\$ 1.200.000,00 a uma taxa de 5% a.a. durante 8 anos. Use $\log 1,2 = 1,079181$ e $\log 1,05 = 1,079181$.(M=R\$1.772.900,00)
- 12. Calcule o montante de um capital de R\$ 300.000,00 a uma taxa de 4% ao ano, aplicado durante 12 anos. Use $\log 3 = 0,47712$ e $\log 1,04 = 0,017033$. (R\$480.304,00)
- 13. Segundo uma pesquisa, após x meses da constatação da existência de uma epidemia, o número de pessoas por ela atingidas é $f(x) = \frac{20.000}{2+15\cdot 4^{-2x}}$. Supondo $\log 2 = 0.30$ e $\log 3 = 0.48$, daqui a quanto tempo, aproximadamente, o número de pessoas atingidas por essa epidemia será de 2.000? (7dias)
- 14. (Unicamp-SP) Estima-se que a população da Terra tenha atingido a cifra de 5 bilhões de habitantes há poucos meses atrás. Imagine um país com uma população de 100 milhões de habitantes e a uma taxa de crescimento populacional de 2,4% ao ano. Em quantos anos a população desse país atingiria a população da Terra hoje, isto é, 5 bilhões de habitantes? Considere $\log 2 = 0{,}301$ na base 10. (aprox. 170 anos)
- 15. Um pequeno investidor tem saldo de R\$ 10.000,00 em caderneta de poupança na database. A instituição financeira paga e continuará pagando juros e correção monetária de 15% ao mês. Supondo que não foram feitos novos depósitos e nem retiradas, calcule o saldo dessa conta, com relação a data-base, daqui a n meses $(n \in Z_+)$
- 16. Determine qual é o tempo necessário para que um capital empregado à taxa de 2% ao mês de juro capitalizado mensalmente, dobre de valor.
- 17. Um país possui hoje, 100 milhões de habitantes. Se sua população tiver um crescimento anual de 3%, dentro de quanto tempo esse país possuirá 300 milhões de habitantes?
- 18. O álcool no sangue de um motorista alcançou o nível de 2 gramas por litro logo depois dele ter bebido uma considerável quantidade de cachaça. Considere que esse nível decresce de acordo com a fórmula $N(t) = 2(0,5)^t$, onde t é o tempo medido em horas a partir do momento em que o nível foi constatado. Quanto tempo deverá o motorista esperar antes de dirigir seu veículo se o limite permitido de álcool no sangue para dirigir com segurança é de 0,8 gramas por litro? (Use 0,3 para log 2)